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ABSTRACT

A Midcourse guidance and navigation sfstem far continucus low
thrust vehicles is developed in this research. The vehicle is requir-
ad to reach an allowable region near the desired gewsynchronous orbit
from a near earth orbit in minimum time. The angular position of the
vehicle in the orbit- is assumed to be unimportant during this midcourse
fiight. The magnitude of the thrust acceleration is assumed to be
bounded. The effects of the uncertainties due to the random initial
state, the random thrusting error and the sensor error are included.

A set of orbit elements, known as the equinoctial elements, are
selected as the state variables. The uncertainties are modelled sta-
tistically by random vector and stochastic processes. The motion of
the vehicle and the measurements are described by nonlineér stochastic’
differential and difference equations respectively.

A minimum time nominal trajectory is defined and the eguation of
motion and the measurement equation are linearized about this nominal
trajeétory. An exponential cost criterion is constructed and a linear
feedback guidance law is derived to control the thrusting direction

of the engine. Using this guidance law, the vehicle will fly in a
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trajectory neighboring the nominal trajectory. The extended Kalman
filter is used for state estimation.

Finally a short mission using thisg system is simulated. The réu
sults indicated that this system is very efficient for short missions.
For longer missions some more accurate ground based measurements and

nominal trajectory updates must be included.
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CHAPTER I

INTRODUCTIQON

Recently, solar electric spacecraft propulsion systems of high
efficiency have been developed. The advancements of this new tech=-
nology have opened the road to a new era of space exploration and
scientific research. Many space missions utilizing this propulsion
system have been planned by the NWational Aeronautics and Space
Administration for the second half of this decade. One of these
misgions utilizes the solar electric propulsion‘Stage (SEPS) for the
delivery and return of scientific payloads between near earth orbits
and the geosynchronous orbits.

The purpose of this research is to develop a practical and
efficient midcourse guidance and navigation system for these continuous
iow thrust vehicles. The wvehicle is required to reach. an allowable
region near the desired geosynchronous orbit in a minimum amount of
time. During this midecourse phase the angular position of the vehicle
in the orbit is assumed to be unimportant. The magnitude of the thrust
acceleration of the SEPS is constrainted to be bounded. The uncer-
tainties due to the random initial state, the random thrusting error
and sensor error are included..

In Chapter II a set of state variables is selected and a
mathematical model is constructed. The motion of the vehicle is
described by a nonlinear stochastic differential equation and uncer-
tainties are modelled by stochastic processes. 1In Chapter III a

minimum time nominal trajectory is defined and the egquation of motion

PRECEDING PAGE BLANK NOT FILMED|
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and measurement equation are linearized about this nominal trajectory.
A meaningful cost criterion is constructed and a linear feedback con-
trol law ig derived for the guidance system., In Chapter IV a naviga-
tion system is constructed and the complete closed-loop system is
discussed. The computer simulation results of this system are
presented and discussed in Chapter V. Finally conclusions are
presented in Chapter VI and the various eguations related to the state

variables are presented in the Appendix.
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CHAPTER II

THE MATHEMATICAL MODEL

The construction of a mathematical model is the most important
step in the design of a gudiance and navigation system for continuous
low thrust vehicles. In this chapter an appropriate set of state
variables is selected. Then the equations describing the motion of
the vehicle and the dynamics of the sensors are chosen. The uncertain-
ties due to the random initial state, the random thrusting error and
the sensor error are modelled statistically. Finally the problem

considered in this research is stated mathematically.

2.h State Variables

The state variables used in this research are the equinogtial
elements [4}. The most impocrtant advantage of these elements is
that their equation of motion are free from singularities for zero
eccentrigity and zero inclination. This is not the case for the
classical orbit elements [2].

The equinoctial elements can be defined in terms of the

classical orbit elements as follows

[ a7] = ]
h e sin (w+)}
% _ X |={ e cos{wtl) {(2.a.1)
AO M0+m+ﬂ
i, ..
p tan(z)sin &
i
|_a | | tan(z)cos &
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where a, e, i, MO' w and £ are the classical orbit elements
a = gsemimajor axis
e = eccentricity
i = inclination
M _= mean anomaly at the epoch
w = argument of perigee

& = longtitude of the ascending node

Alternatively, the equinoctial elements can be defined in terms
of the postition and velocity vectors. A coordinate system is defined
for this purpose as shown in Figure 2.1. The unit vector normal to

the orbital plane is given by

rxyv

¥IIrxvl (2.2.2)

where r and v are the position and velocity vectors respectively.
The components of this vector can be written in terms of the classical

orbit elements as
w =R [0 0117

sin £ sin i
= |-cos & sin i {2.A.3)
cos 1

where Rl is the rotation matrix

cos § sin 2 0|f1 O 1] cos 2 sin @ 0O
R, = sin @ cog N 0]10 cos 1 sin il|-gimn @ cos & 0 {(2.A.4)
0 0 1]1]0 8in i cos i 0 0 1

18



L o~ ' unit sphere

Equinoctial Coordinate Frame

Figure 2.1
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Using (2.A.3) in (2.A.1l} the egquinoctial elements p and g can be

written in terms of these components

p = e . (2.A.5)

q = . I—;*a; {(2.A.6)

The unit vectors £ and g defined in Figure 2.1 can now be written

in terms of p and g

£=R [1 0 01T _
= 1 2. 2
l-p" +gqg
1 2.A.7
=———= [2ra (2.2.7)
1 +p +4g
-2P
g==%r, Lo 1 o0
3
2
= 1+ p e (2.A.8)

1 + p + q

The elements h and k are seen to be the components of the eccentricity

vector in the directions of these unit vectors and are given by

h=e' g (2.4.9)
x=e' £ (2.2.10)
where e is the eccentricity vector
r (rxy)xy
e = - - {2.A.11)
= [zl u

20



The element a is given by

2 _ I3’1[2)—1

T

If the components of the position and velocity vectors along the unit

vecotrs £ and g are denoted by

_ T
xy= r £
T
= £ g
Y1
L Ly
xq v £
. T
Y= ¥ g

the eccentric longtitude F can be written as

2
(1-k B)Xl -hk BYl

cos F =k +
av‘l-hz-—k2
(1‘1128)3( - h kBX
1 1
gin F = h +
afl-hz—k
where
B = 1

1 + /1-h%-k?

The remaining element A, is given by Kepler's equation
0 g

hg = F - kX sin F + hcos F~1/—% t
a

where t i1s the time measured from the epoch.

21
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{2.A.14)

(2.A.15)

(2.A.186)

{(2.2.17)

(2.A.18)

(2.2.19)

{(2.A.20)



These equations are the transformations from classical orbit
elements or position and velocity vectors to equinoctial elements.
The inverse transformation from equinoctial elements to position
and velocity is also included here for convenience.

To calculate the position and velocity vectors from equinoctial
elements, Kepler's equation (2.A.20) must be solved for the eccentri-

city longtitude F. Then the position and velocity vectors are given

by
r = Xl f_+ Yl g
v =% Ei+vh g
k) = all-h®B)cosF+ h k B sinF - kI (2.A.23),
?1 = a[l-kzalsinf‘+ hk B cosF - hl (2.A.24)
% ='-£—:“5‘ [h k B cosF -~ (1-h%8) sinF) (2.A.25)
§ ="H2 [{1-k2B)cosF -~ h k 8 sinF) (2.A.26)
where
r = all-k ¢osF - h sinF] (2.A.27)

2.B Equation of Motion

The only forces assumed to be acting on the vehicle are the
inverse square gravitational attraction of earth, the desired engine
thrust and the random thrusting error. The motion of the vehicle is

described by a nonlinear stochastic differential eguation [10].

[}

&= ax,thu + Glx,)n (2.B.1)
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where u is the desired engine thrust, n is the random thrusting error
and G{x,t) is a 6x3 matrix of the partial derivatives of the equi-
noctial elements with respect to the velocity vector. The G(x,t)

matrix is given by

ax
G»(E:t) = 'E"i . (Z.B-Z)
where
~ 2
da _ 2a T
-y (2.B.3)
sh _/1-h2-k% %1 X1 %1 LT
5v ¥ g L - b6 §E 4 (g - R gridl
k{gq¥, - pX,)
T _ (2.B.4)
ma?y/1-h?-x?
- X X ay ¥
3k _-/1-h“-k 1 1 1 1, .T
v ¥V ar U * k8 g E 4 (g + kB g9l

_ h(qYl - le) WT

{2.B.5)
ma?v 1-né-k2 ,

ai 2 .2 3x
0 _ _ 2 _3 T . [/1-h*-k 1
L — [z -3v t]l” + = Bl{h =

X BYl 3Y1 m
+ kg £+ (h g~ + k 5%~ )gl]

[

(g¥,-pX,)
—Q‘——-WT (2.5.6)

ma’y1-h%-k2
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2, 2

%% ptg
= ama®/1-hc-x?

2. 2
£

omaZyl-h2-k2

1 =

T

w (2.B.7)

{(2.8.8)

Measurement Equation

Sensors are used to
estimate of it's state.
random Sensor errors are
time.

The types and the

to be fixed.

z(t;)

o
i

ti<t2<...

hix, £;) + v ()

<t =t

make measurements and update the vehicle's
These measuremenks which are corrupted by
assumed to be made at discrete instants of

schedule ¢of these measurements are assumed

The measurement equation is given by

(2.C.1)

£

where E(ti) is the measurement vector, E(E'ti) iz a vector function

of the state and gm(ti) is the wvector of the random sensor error.

The form of the wvector function E(i,ti)depends on the type of

measurement.

For example,

if a earth-diameter and a star-elevation

measurement are taken simultaneously, the vector function E(gti)

given hy
2 sin”!
hix,ty) =

(5D

(2.C.2)

_]_ §_c£-
cos (-—;—} o
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X star

star elevation measurement

vl |
[ =

garth diameter
measurement

vehigcle

. Geometry of Earth-diameter
and Star-elevation Measurements

Figure 2.2
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where s is the unit vector from the vehicle to the star and d
is the diameter of earth. These measurements are pictured in

Figure 2.2.

2.0 Statistical Modelling of the Uncertainties

There are three sources of uncertainties considered. They are
the random initial state, the random thrusting error and the sensor
error. The initial state x(0) is assumed to be a Gaussian random
vector. The mean and covariance of this vector is denoted by

E[x(0)] = x ~ (2.D.2)

E{[x(0) - X(0)][x(0)-%(0)]"}= M(0) - (2.D.2)

If the covariance matrix of the initial state is given in terms
of the position and velocity vectors, the necessary transformation

to the equinoctial elements is given by

3x  9x 3x 3x
M(0} =

—— ! N —
3 ooy MO apaw |
x{0) *(0}
where M'(0) is the covariance matrix of the initial position and
velocity vectors. The matrix 3x/3r is included in the Appendix.
The random thrusting error is modelled by a zero mean white

Gaussian random process

Eln{t)]=0 (2.D.4)

Eln(t)a” (1)1 = N 8(t-1) (2.D.5)

The matrix N, representing the strength of the process noise, is
dependent on the desired engine thrust u. Both the n and u vectors are
pictured in Figure 2.3. The z' axis is defined in the direction
.of the vector u. The x' and y' axes are defined in a plane normal

to u to form a triad. The quantities n;. n, and n; are assumed to

be zerc mean independent random processes

26
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EIni(t)] =0 i=1,2,3 ' {2.D.6)

Elng (£) ni(T)] = Ny 6(t-1)  i=1,2,3 (2.D.7)

Eln, {t) n?(‘r)] 0 iAj (2.D.8)

These quantities are also assumed to be independent of the vector

u. Let R, be the orthogonal transformation such that

T

0 0 11 {(2.D.9)

Then the vector n(t) and it's correlation can be written as

n = |ul Ré{nl n, n3]T : (2.D,10}

nl(t)nl(T) nl{t)nz(r) nl(t)nB(TY

E[E(t)a?(T)] = E |9_|2R2 n,{tin; (1) n,(tin, (1} n,y{ting(T) R:

n3(t)n1(T) n3(t)n2(f) n3(t}n3(T)

{2.D.11)

In view of {(2.D.7) and (2.D.8), the correlation of n becomes

N 00
Eln(tin (1] = [ul® R, [0 W, o r,T 5 (t-0) (2.D.12)
0 0w,

rurthermore since ny and n, are defined in a plane normal to u; it

is reasonable to assume that

N, =N _ (2.D.13}

28



Using (2.D.5}, {2.D.12) and (2.D.13) the matrix N is given by

iy T

N=HNII-uul]+ N3 uu (2.D.14)

1
The last source of uncertainties is the additive random Sensocr error
Em(ti) in (2.C.1). This random sensor error is modelled as a zero
mean white Gaussian random sequence

E[zm(ti)]‘= 0 (2.D.15)

T —
E[gm(ti}gm(tj)] = viaij {2.D.16}

Finally, the initial state x(0), the thrusting error n(t) and the

Sensor error Em(ti) are assumed to be independent of each other.

2.E Statement 0of the Problem

Given the nonlinear stochastic system in (2.B.1) and {2.c.1), the
problem is to determine the engine thrust u{t), tt<ty subject to the

bounded magnitude constraint

u(ty] < u_{t) O<t<t (2.E.1)
— _—m —_—

£

such that the vehicle will reach an allowable orbit near the desired
geosynchronous orbit in a minimum amount of time. The function

um(t) in (2.E.l) represents the maximum amount of thrust acceleration
t+hat the SEPS can deliver at time t. The desired geosynchronous orbit
is defined by the vector x. where (xf)4 is free. The guantity (xf)4
is free because the angular position of the vehicle }n the orbit is
assumed to be unimportant during the midcourse phase. The allowable

orbit near the desired geosynchronous orbit is defined by the target

set Xtarget in the state space
X arget = {xitg) : [x (ep) =(xgh l<(8xg)y,  i=1,i#4) (2.8.2)

29



where Gif represents the maximum allowable deviations. The
mathematical modelling of the problem is now completed. For stochastic
systems it cannot be assured that the constraints {(2.E.1) and (2.E.2)
are satisfied. Probability measures are introduced in the next

chapter to overcome this difficulty.
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-CHAPTER III

THE GUIDANCE SYSTEM

The problem formulated in the last chapter is a nonlinear sto-
chastic optium control problem. This class of problems in general has
no known solutions. In this chapter approximations are introduced sa
that a practical solution of the problem can be found. First a min-
imum time nominal trajectory is defined. This nominal trajectory is
the solution to the problem if the uncertaintieslare absen£. Then
the nonlinear stochastic system (2.B.1) and (2.C.1) is linearized
about this nominal trajectory. Thé linearized eguation of motion is
also discretized for convenience. An exponential cost criterion is
Formulated for the discretized iineér stochastic system so that the
vehicle will reach the allowable region near the desired geosynchronous
orbit with the magnitude of the control bounded. Finaliy the solutién
to the linear-exponential-gaussian (LEG) terminal cost problem is pre-
sented and a linear feed-back control law is obtained for the guidance

system.

3.A Nominal Trajectory

Since the objective of the problem is to guide the vehicle so
that it will reach the target set in a minimum amount of time, the
natural choice of the nominal trajectory is the minimum time traject-

ory. The state equation of this trajectory is given by

dx
%
at = St (3.a.1)

31



where Xy is the nominal state and ug is the nominal control. The

initial and the final conditions are

1%

%, (0) = (0)

(3.A.2)
Ro(tg) = % (3.h.3)

where (xf)4 is free. The nominal control constraint is
lgo(t)l < o (t) (3.A.4)

The cost criterion to be minimized is

te
Jo =fu dt : (3.A.5)

The solution of this problem will fix the nominal (xf}4 and tf.

This problem may be solved by various existing techniques such as the
minimum principle of Pontryagin or differential dynamic programming.

Note that the nominal control EO{t) will in general stay on the con-

straint boundary for this minimum time control problem.

3.B Linearization

The equation of motion and the measurement equation may now be
linearized about the nominal trajectory. Define 6x and du as the de-
viations of the state and the control respectively from the nominal

values

6x = x - %, (3.B.1)
bu =1 -y, (3.B.2)
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A linear expansion of the equation of motion yields

(o]

IX = G(xy,tiu + [aa—E Glx,t)ul §x + [g———y_ G(x,t)ul Su

X080 X1

+ G (xg/t) n {3.B.3)

Using (3.B.1) and (3.B.2) this equation may be rewritten as

o
]

ap = DXy, 4, tlx + B(x,,thu + Blxy,t) n

—A(Eo,go,t) %, ' - {3.B.4)

where _
AlzgrBy®) = [%G(E'tm]%'u—o {3.B.5)
B(Eo't) = G(x___o,t) (3.B.6)

The 6x6 matrix A(Eo,u ,t) can be calculated explicitly in terms of
the eguinoctial elements. This matrix is included in the Appendix.
The process noise n in (3.B.4) still depends on the desired control u.
Another approximation is made here so that n is approximated by a zero

inean white gaussian random process n,. The statistics of this process

is given by

Elng(£)1 = 0 (3.B.7)
Elng (6)ng (1)) = Ny 6 (t=1) (3.B.8)
Ny = Nl[I—EOEOT] + Ny u, EOT '(3fB'9)
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Now the linearized equation of motion becomes

ax

at = A(EolEolt)E{_ + B(Eort)g + B(g:_o.t)no

—A(EOTEO't) % {(3.B.10}
Similarily, & linear expansion of the measurement equation (2.C.1)
yields

_ 3 . '
E(ti} = Q(gofti) + [gg Q(gfti}]Eoéi + Eh(ti) (3.B.11)
Using (3.B.1) the linearized measurement equation . becomes

{3.B.12)
where

_ .9
H(Eﬂ'tl) - ["

hx.t;) ],

|5

{3.B.13)

The matrix H(Eo'ti) is a nonrandom matrix which depends on the type of

measurement taken. For the earth-diameter and star-elevation measure-

ments, this matrix is given by

_ 24 T
£@4r2—d - 31
T 9L
Hizgt;) = | r’s’-(s"px” L 3%
rzvé'z—[sTr)2 r2 4r2—dZ %
- d ¥ L 42 {3.B.14)

r
where Tx 1s a 3x6 matrix of the partial derivatives of the positicn

vector with respect to the equinoctial elements. This matrix is in-

cluded in the Appendix,
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3.C Discretization

It is more convienient to solve the guidance problem if the state
is expressed as the sum of a stochastic process ¥ and a nonrandom

vector function b. Define ¥ and b by the following equations

ax ~
gt = PlEprug tIX + Blx,,thu + Blx,, tin, (3.C.1)
b = A(x,,u,,t)b - A(X,, U, t)x
dt 2070 = =0r=0"""=0 (3.c.2)
Then the state X is given by
x=%+b ' (3.C.3)

If the boundary condition on b is defined at the nominal final time
tf by

bity) = x¢ (3.C.4)

then gjtf) represents the deviation at the target. The corresponding

initial condition of b is given by

R |
B(0) = 87 (£, 0) +f

te

B, 0)A(Xy, 05, TI K, (T) dT {3.C.5)

u
0 -0

where ¢(T,0) is the state transition matrix satisfying the follow-
ing equations

30 (T, t) _

T A(xg,uq T) (1, t) (3.c.6)

d(t,t) =L (3.c.7)

Using 3.C.3) the initial condition for X is given by

%(0) = x(0) - B(0) (3.C.8)
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Therefore %(0) is also a Gaussian random vector with mean and covari-

ance given by
E[x(0}]
E{(R(0) - E(0) + B(0)] [X(0) - X(0) + b(0)}T) =m(0) (3.C.9)

x(0) - b(0)

.The linearized measurement equation (3.B.12) may alsoc be written in
terms of X and b

H(xy £ )X () + v (t.) + hixs, t,) + Hix,,t,) [b(t)) - E‘—O(ti)_]

z(t;)

(3.C.11)

Now (3.C.1}) and (3.C.2) may be discretized. Let the time interval

[O,tf] be partitioned into n equal suhintervals
0 = t<t,<o. <t 0=t {3.C.12)

Then the discretized equations are

t.
X = % I+l
Eltg,)) = @lty, ty)E(ey) +j; Ditg,),T) Blxy, TIu(t)aT + ng
' i
(3.Cc-.13)
-1 e
Blts) = ¢ Tltg k)bt +ﬂ lE5T) Alxg by D EG(DAT (5 0 1y,
3
where 054 is a zero mean white Gaussian random seguence
B [ngy) = 0 (3.C.15)
E |n .nT] = N,. 6. (3.C.16)
—0j—0k 03 “ijk
tj+l \ T
NOj =.IZﬁ ¢{tj+1,r) B(EO,T) NO(T) B (EO.T)
@T(t T)dar
j+1° {3.C.17)

36



If the number n of subintervals ig very large, the control u(t}

and the function um(t) can be approximated by step functions

u(t) = g(tj) tjit<tj+1 .(3.C.18)
um(t) = um(tj] tjﬁt<tj+l‘ (Q.C.lg)
Then the discretized equation (3.C.13) becomes
_}E(tj+1) = ‘I’(tj‘l'l'tj)i(tj) + w{tj*'l’tj)ll-(tj} + n—O] {L_B.C.ZO.)
where
(t t.) = 341 o(t 1) Bix,,t)dar  (3.C.21)
LA FSRLS LI A J+1° Xgr -C-
J
. The control constraint equation {2.E.l) also become
lg(tj)| < um{tj) j=1,2,...n (3.C.22)

3.D. Exponential Cost Criterion

In the absence of the uncertainties, the minimum' time nominal
trajectory defined in section 3.A is the solution to the guidance
problem. When the vehicle is disturbed by random thrusting error,
the trajectory of its true motion will deviate from the nominal tra-
jectory. However, there is no reason to try to drive the vehicle
back to the nominal trajectory. Instead, the control sequence E(tj)
is determined to take into account the uncertainties so that the

vehicle will reach the target set at the nominal time t. with the
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control sequence bounded. For the stochastic system (3.C.11) and
(3.C.20) it cannot be assured that these objectives can be met.
Therefore probability measures are used to evaluate the effectiveness
of the control in acheiving these objectives and the probability that
the vzhicle reaches the target and the controls stay within the bounds

is to be maxinmized.

I, = P, [x({Eg) € xtarget and 'g(tlﬂi u (t;) and...
and |uit )| < w (£)] {3.D.1)

This probability can be written as an expectaticon if the following

indicator functions are defined

1 if {x (tn) - {xo);|<(6x,) .

I(Gx )[x(tf)i] = } N i*"f i R 3 |

£ lo if Ixi(tf) - (xgd g [>(exg)
i=1,6; i#4 ° (3.Di2)

1 if lg(tjllgum(tj}

0 if |E(tj)f>um(tj)

j=11,2.../n (3.D.3)

Then the probability I, in (3.D.1) is the expectation of the product

of these indicator functions

sox fio
I A
(3.D.4)
Application of dynamic programming to this problem will determine the
optimal control. The character of the control is such that maximum
thrpst is utilized until the estimated state reaches the target state.
In -effect the estimated state is driven to the target as gquickly as .

1'[ .
g, %3 (0] So1n Ty tg(t,-n}

possible and the essential character of the minimum time solution is
also present in the maximum probability solutien.
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Since the objective of the SEPS spacecraft is to reach the
target set in minimum time, the centrol sequence E(tj) should

satisfy the eguality in (3.C.22). There is no known general sclution

for the problem of determining the control seguence to maximize

the expectation I, in (3.D.4) subject to the linear stochastic
system (3.C.11) and (3.C.20). The product of these indicator func-
tions will now be approximated by a exponential cost function.

= 1
J,3E [exp ‘.-_2_

f

ET(tj)ng(tj) + (ﬁ(tf)-gf}T Qf(i(tf)-zf)lr] (3.p.5)

5

1

1t

The weighting matrices Lj and Q¢ must be chosen so that each term

of the exponential function in (3.D.5) approximate the corresponding
indicator Function in (3.D.4). The normalized second moments of the
indicator functions %fo)i [xi(tf)] are

X (6xg) 5

1 : (6x,.) ;1
PICEP) [x, (t,)-{x.) 17 dxlty), = L% 4]
c{f)._ (dxflil £ £°1 1 3

i=1l,6; 1i# 4 {3.D.6)

The normalized second moments of the indicator functions Iu EE(tj)]

m
are
I .3 . 3 ﬁ[uk'ftj)]z d uy(ty) du (ty) du,(ty)
2
_ [um(tj)]
5
k = x,¥y,2
j=1,2,...n (3.D.7)
where the integration is over a sphere with radius um(tj}. Therefore
if‘the weighting matrices Lj and Q; are chosen as
5
Lj = = I {3.D.8)
[um(tj)]
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1 .
. 2 0 Q 0 0 0
[6xg),1]
1 0 ) 0
0 2 0 0
[(6xg),]
1
0 0 2 0 0 0
Hfo)3]
Qf = 0 0 q 0 V] 1]
1
0 0 0 0 W2 0
[(6xg) ]
0 1
0 0 0 -0 [—_(fo’elz
| J (3.p.9)

the normalized second moments of the indicators are the same as the
normalized second moments of the corresponding terms in the exponen-
tial cost function. The solution for the problem of the maximiza-
tion of the expectation cof this exponential cost criteria..is pre-

sented in the next section.

3.E Solution of the LEG Terminal Cost Problem

The linear discrete stochastic system obtained in the last four

sections is given by

3£tj+1) = @(tj+1.tj)3(tj) Uty etpuley) +ong,

j = 1,2,...n (3.E.1)

i=1,2,...m (3.E.2)

40



The initial state E(tl) is a Gaussian random vector, the process
noise Doy and the measurement noise gm(ti) are zero mean white Gaus-
sian random sequences all of which are statistically independent.
The measurement noise covariance and the control weighting matrices_
are positive definite matrices. The process noise covariance and the
terminal state weighting matrices are positive semi-definite matrices.
The problem of the determination of the control. sequence to maximize
the éxpectation of the exponential cost criteria in (3.D.5) is
called the linear-exponential-gaussian {LEG) terminal cost problem.
The maximization of the expectation in (3.D.5) is the same as the
minimization of the following
2 T T
J, =B {Y explF 3 1 (ty)Ly ulty) + 1 E (e o gc_(tfn%
’ (3.E.3)

with l

v = -1 (3.E.4)

This problem is treated in a paper by Speyer, Deyst and Jacobson
[9]. The contrels are restricted to be Borel functions of the past
measurement history. The key in solving this problem is to utilize
the results of the Kalman-Bucy filter [5] and dynamic programming [6].
For the terminal cost problem formulated here, the separation theorm

[1L1] holds. The optimal feedback control is a linear function of the

current state estimate.
g(tj) B -A(tj) x{t]) (3.E.5)

where g(tj) denctes the current minimum variance estimate of g(tj).
Under the conditions of this problem, the state estimate is the
mean of g(tj] conditioned on the past measurement history [E(tl)'

E(tzl...gtti)], tiitj' At a measuremernt, this conditicnal mean is

41



(3.E.6)

5 S+ R(E) ey

updated by
"y denote the estimate of g(tj) after and before

= ﬁ(t

where g(tj+) and i(tj
the measurement respectively. 'The measurement residual 1(tj) is

given by
1(tj) = i(tj)
- Blxgity) Eltg) (3.E.7)
(3.E.8)

The Kalman gain K(tj) is given by
T -1,
P(tj+) H txg,ts) Vo (t))

K(tj)

where P(tj) ig covariance matrix of the estimation error conditicned
This conditicnal covariance matrix

on the past measurement history.

is updated at a measurement by
P(t.T) = P(t.”) HY(%n,t.) [H{x.,t.) P(t.") HY(x.,t.)
i 3 "3 "3 3 "3

(3.E.9)

+
+ Vet Bk, ) P(ELT)
3 =0'73 3

where P(tj+) and P(tj-) denote P(tj) bafore and after the measurement
respectively. Between two measurements, g(tj) and ?(tj) propagate

according to the following equations

§(tj+1) @(tj+1,tj) E(tj) + w(tj+l,tj) g(tj) (3.E.10)
T

¢(t.+l,tj) P(tj} & (tj+1,tj) + Noj (3.E.11)

P(tj+l)
The initial state estimate and the 8rror covariance matrix
While the separation theorm

by the apriori statistics of g(tl).
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holds for this problem, the certainty eguivalence principle [3] does
not hold. The feedback control gain A(tj) depends on the noise char—l
acteristics. This dependence reflects the quality of the state est-
imate. The feedback contrel gain matrix is given by

= T -1,T

Q{tj+l) ¢(tj+l,tj) (3.E.12)
The matrix Q{tj) is given by a backward difference eguation

( - T,, -
. =& . l L) - . et I N ;
alt, y) (tyrey_p) (@) - Qltg) eyt ) [WT(EgEy )

-1 ,T
Q(tj) ¢(tj,tj_l) + Li_4] Pt ,t

1
srtyop) Qg

J

blt. ,t. : .E.13
(tjftj_l) (3.E )

b

where at a measurement

- + + -1 T +
. = . . . ) - YK . .
Q(tj ) Q(tj y + YQ(tJ ) K(tj) [Y (tj) Y (tj) Q(tJ )

K{tj)]‘l KTty 0eesh) ' (3.E.14)

Note that at a measurement, (3.E.12) becomes

= T - . ~1
A(tj) = [Lj + ¥ (tj+l,tj) Q(tj+1) w(tj+1,tj0]

T

Y (tj+l,th Q(tj;l) ¢(tj+l,tj) (3.E.15)

where Q(tj+l) is replaced by Q(tj+l).

The matrix Y(tj) is the covariance matrix of the measurement

residual

g T
Y(t) = H(xy,t,) P(tj} H (Eo,tj) + V(tj) (3.E.16)
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Equation (3.E.l4) shows the dependance of the control gain matrix on
the noise characteristics explicitly. The terminal condition of

Q(tj) is given by

oft .

-
nri

)=y +voe (PR —vee 17l o,  GLEam

3.F The Guidance System

The linear feedback contrel law cbtained in the solution of the
LEG terminal cost prcblem can be used for the midcourse guidance of
the SEPS Spacecraft. Since the overall objective of the SEPS Space-~
craft is to reach the target set in minimum time, full thrust acceler-
ation will be used to propel the vehiele. The LEG guidance law is

used to determine thrust direction only and full thrust magnitude is.

always utilized. Therefore the guidance law is given by

L)

2ley) = vy (ey) '!_'_El)_l' (3.F.1)

J

clie

where using (3.C€.2} and (3.E.5) E'(tj) is given by

wley) = =aley) [Rle)) - BUES)] (3.F.2)

The on-board guidance system is only required to perform the vector
subtraction and matrix multiplication in (3.F.2). The feedback
control gain matrix A(tj) and the vector E{tj) can be computed be-
fore the mission'and stored in a computer on the SEPS for real time
mission usage. The navigation system to estimate the state i(tj)
is discussed in the next chapter. The guidance law (3.F.2) is

pictured in Figure 3.1.
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CHAPTER IV

THE NAVIGATI(ON SYSTEM'

In the last chapter a linear féeaback control law was obtained
for the guidance of the SEPS Spacecraft. Using this control law, the
vehicle will fly in a trajectory neighboring the minimum time nominal
trajectory. Therefore the linear Kalman filter presented in section
3.E.is not adequate to estimate the vehicle's ‘state. In this chapter
the extended Kalman filter [7] which is adequate for neighbouring
trajectory estimation is discussed. This_estimafér, together with the
linear fgedback contreol law obtaiﬁed in the last chapter forms the
complete closed-loop midcourse guidance ana'navigation system for

the SEPS Spacecraft.

4.A Extended Kalman Filter

The extended Kalman filter has the same structure as the linear
Kalman filter. However, instead of linearizing about the minimum
time nominal tfajecto:y alone, the extended Kalman filter is linear-
ized about a number ¢f nominal trajectories. After each measurement,
a new estimate of the state is obtained. This new estimate is used
to define a new nominal trajectory. Then the equation of motion and
the measurement equation are linearized about this new nominal tra-
jectory.

It is more convenient to discuss the extended Kalman filter if
the continuous equation of motion (2.B.1) is used. Now suppose the |
control u(t), O<t<t. is known. Let the estimate of the state and the

error govariance matrix of this estimate after the measurement at

PRECEDING PAGE BLANK NOT FIIMED |
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time t; be %(t;) and P{tIJ respectively. This estimate is used to

define a nominal trajectory x, (t) by

dx, (t)

—gg— = 6 (x;,t) ult) <t (4.a.1)
-—ﬂ +

x, () = x(t;) (4.5.2)

The subscribt i is used to emphasize the dependence of the nominal
trajectory Ei(t) on the state estimate §(ti). Define 6§i{t} and
8z, (¢

i+1) PY

6x, (£) = x(t) - x;(t) <t (4.A.3)

Linearization of {2.B.1) and (2.C.l) about this nominal trajectory

yields
asx, (¢)
bz; () = H(X;,by,9) S8x;(t + v (t 1) (4.2.6)

ivl) T Vnltin

Now the linear filtering theory can be applied to estimate 5§i(t)‘
Before the measurement at time ti+l' the estimate 5§i(t} and the

error covariance matrix PGx {t} of this vector are given by the
=i

following equations

dé&, (t) A
—'--—d-E—-— = A(Ei,g,t) (S)_Ci(t) (4.A.7)
dpaii(t) .
+ Rix, tIW nT(v ) . cbct
= I B i— i+1 (4.2.8)
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Using (4.A.3) this estimate is related to the estimate £(t} of the

state x(t) by
égi(t) = %{t) =~ Ei(t) _ t, <t (4.2.9)

Also using (4.A.2)

+
6Ei(ti) 0 . (4.A.10)

and in view of {(4.A.7)

x;(€) =0 & <t<tig (4.A.11)

Therefore before the measurement at time t, 41’ the estimate of the

state is given by the nominal trajectory Ei(t)

g(t) = x;(t) - (4.A.12)
d2le) - 6k, ult)
£, <E<t; , {4.A.13)

At the measurement at time t, ., 6x(t) and P, (t) are updated by the
. =i
following equations

X, (t1+1) = Sty L) + R () 182508 ) - B0 LEy,)

Sx (t1+l)] {(4.A.14)

_ |
R et T OE (g 1+1’ voolE ) (4.A.15)
+ -
Pé‘.gi(tj&l) - Péii(ti-bl) - P‘Sii( 1+1)H (g 0t500) [H{z30%,,)
._1 i
Py, (Eipp) HT (%, ) + VIE;, D17 Hixy b0 Be (£,
_1 —1
(4.A.16)
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Using (4.A.4), (4.A.9), (4.A.11) and (4.A.12), (4.A.14) bgcomes

)+ K, (t {z(t,, .) - hix(t

i+l = = 1+1)’ti+1]}
(4.2.17)

) = &t

i+l l)

Using (4.A.3) the error covariance matrix P, {t) of the estimate of
‘ . =i
6§i(t) and the error covariance matrix Pi(t} of the estimate of x(t)

are the same

ap, (t) A o~ - T
_Ti—E—" = A(ir}-_‘rt) Pi(t) + Pl(t) A (EfElt) + B{Eft)N B (Elt)

tilt<tin (4.A.18)

+ - Tir, - . -
Byt (ti4)) E [5(ti+1}'ti+1]{H[3(t

) = Pile; L) i+1) rtiad

Y TR
Pyltyiq) BUIR(E 1) ey 4] + Vg, D) D rixe

i+l’. 1+l) t1+1l Py (t1+l)

(4.2.19}

Hence (4.A.17) ¢can be rewritten as

X{t1+l) x‘t1+1) + Ky (t1+l) {Z{t1+1) - h[x(t1+l) t1+1]}
(4.4.20)
where now the Kalman gain K. (t1+l) is given by
_ -1
Ki(ti+1) =P (t i+1} B [x(t1+1) t1+1] v (ti+l) (4.A.21)

Now the new estimate g(ti:l) can be used to define a new nominal
trajectory similar to {(4.A.1l) and (4.A.2) and the preceding method .
can be repeated. The result is the extended Kalman filter given by

(4.A.13), (4.A.18) to {4.A.21). This estimator is pictured in

Figure 4.1.
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4.B The Closed-loop Guidance and Navigation System

The linear feedback control law in Chapter 3 and the extended
Kalman filter in the last section forms the complete closed—100p‘
midcourse guidance and navigation system for the SEPS Spacecraft.
The on-board guidance system consists of the linear feedback controi
law (3.F.1l) and (3.F.2) where A(tjl and g{tj) are precomputable
guantities. Note that A(tj) is computed by using the equations in
Chapter 3 where the quantities P(tj) and K(tj) are not the same as
the quantities P, (t) and Ki(t) in the last section. The gquantities
P(tj) and K(tj) are computed along the minimum time nominal traject-
ory while the quantities Pi(t) and Ki(i) along a number of nominal
trajectories. This control law will guide the vehicle to fly along
a trajectory neighbouring to the minimum time nominal trajectory

and reach the target set at the nominal final time t The thrust

£
acceleration is always fully utilized to propel the vehicle and the
control is always on the constraint boundary for this minimum time
mission. The om-hoard navigation system consists of tﬁe extended
Kalman filter {(4.A.13) and (4.A.18) to (4.A.21) where all the quanti-
ties must be computed on-board the vehicle. The on-board computa-
tion of the;e guantities is the most important disadvantage of this
navigation system. The closed-loop system is pictured in Figure 4.2.
Although this guidance and navigation system is designed for the mid-
course phase, it can also be used for the terminal phase by including
the term for the angular position of the vehicle in the terminal
state weighting matrix. However, in this case the objective of
reaching the target set which now included the angular position of

the vehicle is more difficult to meet than the midcourse case, unless

the nominal mission time is very short.
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CHAPTER V

SIMULATICN RESULTS AND DISCUSSION

A computer program has been prepared to simulate this midcourse
guidance and navigation gystem in real time. Although the system
was originally designed for missions from near earth orbits to geo-
synchronous orbits, the simulation of a shorter mission should
equally well reveal the character and performance of the system.

The simulation results of this short miscion, together with a dis-

cussion are presented in this chapter.

5.A Simulation Results

The minimum time deterministic control problem which generates
the minimum time nominal trajectory defined in Section 3.A can only
be solved by numerical methods. For the gsimulation in this research
an approximate minimum time nominal trajectory iz used. For the de-
tails of this approximate minimum time trajectory, the reader is
referred to Shepperd [7]. Flying along this nominal trajectory the
SEPS Spacecraft would reach the desired geosynchronous orbit from a
near earth orbit. If the near earth orbit has a radius of 4300 miles
and an inclination of 28 degrees, and if the desired geosynchronous
orbit has a radius of 2600 miles and an inclination of 0 degrees, the
nominal final time of this mission would be approximately 150 hours.
In the results presented here only the first 22.64 hours of the mis-
gion are simulated. This nominal trajectory is pictured in Figures
5.1 to 5.6. The semi-major axis is increasing approximately linearly

with time. This shows that the averaged radius of the orkit is in-
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creasing. The equinoctial elements h and k vary sinusuidally with
an increasing amplitude. This increasing of amplitude showed that
the averaged eccentricity of the orbit is increasing. The equinoc-
tial element AO is increasing monotonically from 0 radians to
{2w + 5,073) radians. This variation showed how the angular posi-
tion of the SEPS Spacecraft in the orbit is changed by the engine
thrust acceleration. Finally the variations of the equinocti%l
elements p and g showed that the inclination of the orbit is de-~
creasing monotonically.

The values of the input variables used in this simulation are

summarized as follows. The statistics of the initial state are

" 0.1085 x 10'er|
0.0
x(0} = 0.0
0.0
-0.249
0.0
| d : (5.A.1)
~0.196x10 %er? 0.0 0.169x10 er 0.0 er -0.153x10"%2er
0.0 er 0.139x107° 0.0 0.143x10™° 0.0
0.169x10 er 0.0 0.150x107° 0.0 ~0.414x10~%3
m{0)= -5 -5
0.0 er 0.143x1077 0.0 0.154x10™° 0.0
-0.153x10"%%er 0.0 -0.414x10"23 o¢.0 0.6102x10" 7
| 6.0 er -0.161x10"2% 0.0 0.480x10°7 0.0
0.0 ]
-0.161x10 22
0.0
0.480x10" 7
0.0
(5.A.2)
0.103x1075 _
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where er is earth-radii
er = 0.20925636 x 107 feet (5.A.3)

The vecgtor E(O) is eguivalent to a circular orbit with a radius of
4300 miles and an inclination of 28 degrees. The matrix m(0) is

equivalent to the following standard deviations

(¢ )., = 1 nile (5.A.4)
f i

(Ur)2 = 5 miles (5.A.5)

(Ur)3 = 1 mile {(5.A.6)

(cv)l = 5 feet/second ’ {(5.A.7)

(U_V)2 = 15 feet/second (5.A.8)

(0,) 5 = 15 feet/second (5.A.9)

where (Ur)l, (cr)z, (UI)3'(OV)1' (ov)z, (Uv}s are the standard-
deviations of position and velocity in altitude, down range and
cross track directions respectively. These statistics are typical

of a spacecraft launch trajectory. The nominal final time is

tf = 22.64 hours {5.1.10)

The parameters defining the target set are

[ 0.1329%10"'er )

0.2670x10%

0.3221:«:10'2

0.5073x10%

-0.2325
3 (5.A.11)

| 0.2068x10"
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(6x,), = 0.775 x10 " 4er (5.2.12)
(6x.), = 0.858 x10~4 (5.2.13)
(6x) 3 = 0.971 x10”4 . (5.A.14)
(6x) g = 0.594 x10”4 (5.A.15)
(6x} g = 0.106 x16~f (5.A.16)

The values of the paraméters Sxf defined the size of the target
set. Since it is expected that the deviation between the true and
nominal state at the nominal final time will not be less than the
expected estimation errcr, the wvalues 6gf in (5.A.12) to (5.A.1l6)}
are taken from the standard deviations of the corresponding diagon-
al elements of the estimation error covariance matrix P(tf). Note
that the covariance matrix P(t;) is computed along the minimum time
nominal trajectory which is not the same as the covariance matrix
Pi(tf} computed using the equations of the extended Kalman filter.
The thrust acceleration function is
ed,

[
( l“‘-I"'t}
5

um(t) =
{(5.A.17)

where 99 is the surface gravity acceleration, IS ig the engine

specific impulse and € is the engine's initial thrust acceleration

in terms of the gD“s

* € =0.1x107 (5.A.18)
I_= 0.4 x10? sec (5.2.19)
gg= 32.0 feet/second’ (5.2.20)

The parameters which represent the strength of the process noise are

3

N, 0.1 =10~ {5.a.21)

n

N, = 0.42 x107’ (5.A.22)
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The value of the parometer Nl in (5.A.21) is equal to the square

of 1 percent and the value of the parameter N3 in (5.A.22) is equal
to 1/2 of the square of.l/60 degree. A set of measurements is
taken every half orbital pericd. Each set of measurements consist
of one earth-diameter and two star-elevation measurements. The

parameter which represents the strength of the measurement noise is

0.84x10 7 0 0
v, = 0 0.84x1077 0
0 0 0.84x10" (5.a.23)

Note that (0.84x1077) is equal to the square of 1/60 degrees

The results of this simulation are pictured in Figures 5.7 to
5.12 where the difference between the true state and nominal state,
the difference between the true state and the estimated state as

shown. At the nominal time tf, the results are

0.9232 x 10‘4e:.:T

0.7592 x 10°*

~0.4034 x 1074
xlte) - x(t

} : - -
true f'nominal = -0.6880 x 10 1

-0,2113 x 10'4

| 0.6884 x 1074 (5.3.24)

0.1796 x 10 “er
0.1423 x 10

0.6247 x 10

x(t

true = g

®(t ) : = -
=*"f estimated = 0.1330 x 10

0.38%5 x 10

0.1145 x 10~ (5.A.25)
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The corresponding results

are

a(th a(t

f}nominal
e(tf)

true

e(t

f)true nominal

l‘;f}nominal
Mo(tf)

l‘tf,true
MD(tf)true

m(tf) wit

f)nominal
R(tf)

true

2{t

f)true nominal

altgdyrye alty)

e“‘_'..‘E)t:l;ue

estimated

e(tf)estimated
l(tf)true l(tf)estimated

Mo(tf) Mo(t

true f)estimated

w{t wlt

f)true f)estimated

alte) Q(t

true f)estimated

5.3 Discussion

nominal
= 0.1974x10"

= 0,9232x10"

0.1824x10

= 0.4009x10"

0.8887x10"

= 0,2959%10"

= 0.1796x10"
= 0.1397x10"
=~0.,7390x10"
0.3179x10".

= 0.1651x10°

0.4904x10"

4
4
1
1
3

3
3
4
2
1
4

er

aer

in terms of the classical orbit elements

(5.A.2é)
(5.4.27)
(5.A.28)
{5.4.29)
(5.A.30)
{5.A.31)

(5.A.32)
(5.a.33)
(5.A.34)
(5.A.35)
(5.2.36)

(5.4.37)

The results showed that the SEPS Spacecraft was flying in a

neighboring trajectory and reached a point close to the desired

target set at the nominal final time te-

Due to the presence of the

uncertainties,the deviation between the true and nominal trajectory

is not small throughout the flight except at time'tf.

the deviation between the true and the nominal state is small.

comparison of (5.A.12) to (5.A.16) and (5.3.24)

At time tf,

A

showed that the

closed-loop system is performing reasonably well for this short mis-

sion. The values of |h(t - hi{t,.}

f)true

nalI and |

{dx
£

- aft

] (&
; [

- )
J

27 -f

f)nominaI!

-

f nominal|

Akt

t

£

are less than the

is approximately 1.19 times the value

true-k(tf)noml—

values of

1 e x
lamfj'true

of (fo)l.



The value of [qlte) .o ~ q(tf)nominall is approxiamtely 64.94 times

the value of {6xf)6. Thig large ratic is due to the fact that (fo)6

is very small and the actual estimation error [q(tf) - gt

f)esti-
| is approxiamately 10.6 times the value of (6xf)6. However,

true

mated

since the equinoctial elements p and g should have the same charac-

ter, a comparison of the values of [p(tf) and

true p(tf)nominall

|q(tfltrue - q(tf}nominali in {5.A.24) showed that the closed-loop

system is still performing reasonably well. The value of l(ko}true

nominall iS net small for this midcourse flight since this

(AO)
equincctial element is not included in the exponential cost criterion.
The deviation between the true and estimated state is also pre-
sented in Figures 5.7 to 5.12. Between two measurements the estima-
tion errors are approximately constant. At a measurement the esti-
mation errors have discontinuities. These estimation errors tend
to increase slowly with time. This indicated that for a longer mis-
gion some more accurate measurements such as ground based tracking
must be used to reducé these estimation errors. At these high ac-
curacy ground based measurements,the minimum time nominal trajectory,
the feedback control gain matrix A(tj} and the vector g(tj) could
alsoc be updated. If these ground based updates are included in the
miscourse guidance and navigation of the SEPS Spacecraft, the closed-
loop system developed in this research should also perform well for
a longer mission.
The most important advantage of using the LEG guidance law in
the closed-loop system is that the weighting matrices Lj and Qf ¢an
be chosen to achieve desired system performance. This fact is inéi—
cated by the simulation results. In the linear-quadratic-gaussian

{LQG) problem [1], these weighting matrices usually must be obtained

by iterations to achieve the desired system performance.
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CHAPTER VI

CONCLUSIONS

A practical and efficient midecourse guidance and navigation sys
system for the SEPS Spacecraft has been developed in this research.
Te reach the target set in minimum time the SEPS Spacecraft always
utilizes full thrust magnitude, The thrusting direction of the en-
gine is determined by the solution of the LEG terminal cost problem.
The LEG approach provides a systematic way of determining wéighting
matrices for problems invelving bounds and the control system design
did not require many iterations, as is typically the case when the
LQG approach is used. The solution of this problem, which is the
guidance law, determines the control as a linear function of the
current state estimate. Using this guidance law, the SEPS Space-
craft will fly in trajectory neighbouring the minimum time traject-
ory. To take into account this fact, the extended Xalman filter is
used for the navigation of the SEPS $pacecraft.

The simulation results of & short mission have indicated that
this closed-leoop system is very efficient in bring the SEPS Space-
craft to the target set. However, these results have also indicated
that the state estimation errors tend to increase slowly with time.
For a long mission this means that the navigation system would have
very poor state estimation and conseguently the closed-loop system
would have very poor performance. Therefore it is concluded that if
this system is te be used effectively for a long mission, some more
accurate ground based measurements and nominal trajectory updates
must be included in the guidance and navigation of the SEPS Space-

craft.
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The determination of an efficient measurement schedule, the fre-
qguency of high accuracy ground based measurement and nominal tra-
jectory updates can be carried for further study to improve the
effectiveness and performance of this closed-loop system. The pos-
sibilities of using this closed-lcop system for terminal guidance and

navigation of the SEPS can also be investigated.
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APPENDIX A

3%
THE MATRIX F
9%
The matrix Tz is given by
Ix T T T AT LT T
X _ . 3a  dhT 3k 0 op 3q ' -
5t~ g 5z T T hr ar ! S -
where
BaT a2
sa _ a4 _ . (A-2)
ar 3=
T 27 .2 23X 3 Ay
3h Y/1-h“-k 1 a 1 a
= = - e [{ + hEm &5 X )f + {z— + hfm —~—= ¥.}g]
3T o 3k o3 1= 5K 3 U
x (q¥,-pX,)
ot W (A-3)
ma2y/1-h%-k*
T 7 ax 3 3y 3
ak™ _¥1-h“-k 1 a 1 _
== [(zp= - kBm =5 X)) £ + (53~ kém =5 Y,)g]
— ma r r
h(g¥, -pX.)
+ 1 1 W {(a-4)
maszl—hz—k2
T —— 3 Y
Mol _ 1, o3t Y-kl s[rhax—1+kax—l)f
3 A 3 L - 5h 5K =
- ma ma
oY aY (g¥,-pX.)
+m§'ﬁ'1;+k‘.§ﬁ}')i}‘ #__v_; {A-5)
maz/l—hz—k

M



T 2. 2 .
ar = - xptad ¥, w (A-6)
= maZy1-h2k2

T 2, 2 .
g_q_ =" _1+B_q_~_____2__2_+ X ¥ (a-7)
- male-h -k

. T
3h h

. B
Xy W ¢ (A-9)
™ =GR T
2t 3v
s = G g (a-10)
3'1 v T
= (—)} g (A-11)
)3 2
av v - ' ‘

The partial deriviatives Eﬁ . §E are presented in Appendix C.
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APPENDIX B
or
THE MATRIX %

ar
The matrix 5% ig given by

ar 9r 3r 3r dr Ir oL

5~ [ 7a 3R 33, 35 5q ' (8-1)
where

3r -

=_1 _ 3

32 a (E_ T t "_7) {B-2)

ar 3%, oY,

-3 £t ¢ (B-3)

5r 98X ayY

= _ "L 1

- Lt ¢ (B-4)

3L ¥y

—_ = = {B.5

BAO m

Ir 2

—= = lg(¥,£ - X,g}-X,w] {B.6)

9P l+p§+q2 1 12 7%1=

dr 2

= = [p{X,g9 - ¥Y.£) + ¥.w ] (B.7)

3q 1+P§+q2 12 1= 1%
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APPENDIX C

v
THE MATRIX 3%
. av
The matrix % is given by
v v 3V 3y 3y ¥ ¥ |
7% - [3a 3K 3K 5%, 5 3@ 1)
where
v
— 1 ut
— = - (v - r ) (C_Z)
da Ta X ——r T
v 3'1 3'1
LI (c-3)
av B'l 3'1
* A £ 2 {C=-4)
v 23
oo {c-5)
arno r
oV 2 ) ] .
BT Tphg? f e T el (C-6)
3P 1ip?ig? 1 12 1 ¥
oy 2 . ) )
1 14p%q 1= 71 1
3k, _ ma’ {(h233 +8)(1-5) - @B o5 F(A-F) + hg sin F + 2 cos® F]
ih ~ T I-B Y = 2 cos
ila a.
- _I' ['r' cos T (J\—F) - sin F] (C_B)
t o 81
G Pakils BLANK NOR FILMER)

PRECEDING



9%
E”Ei = [?Iig— (1-%) + % gin F (A-F) + cos F (h8— 2 sin F)]
El5{1 a _.
+ —r— [E sin F (K-F) + cos FJ] (C"'g)
3y 2
5.h—l= ma E{-g—(— - 1) + -a—léﬁcos F (A-F} - sin F (kg = i—_cos )]
an'(l a
- = [; cos F (A-F) - sin F] (C-10)
Ay 2 2.3
s = s € - 1 - EL sin PO-P) - KB cosF - 2 8in’F]
aY
+ -——{—- sin F{A-F) + cos F] ‘ {(C~11)
A= A, + mt (C-12)
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APPENDIX D

THE MATRIX A(X,, Uy, t)

The matrix A(EQ' gy t)is giwven by

3
Alx,, u,, t) = [w= Gi{x,t)}ul
o' "o 9% T g,
e =
3 ,3a 3 ,da 3 ,0a 3 3a 3 ,o0a a ,0a
E(T‘{ u) gﬁ(ﬁ ) 3o v w) ﬂ-a( v u) W(’é_y_ u) E‘E(W u)
3 ,8h 3 ,3h 3 ,3h 5 ,3h 3 ,8h 3 ,9h
E(BV u) ﬁ(*a—z' u) W(ﬁ u) 5;\—0('5?‘{ u) 'BE(W u} 'a—a'(ﬁ- u)
3 8k 3,8k 3 9k LS 3 .9k 3 8k
EE(EE u) ﬁ'('ﬁ u) W( v u) gro'(ﬁ u) EE(W u) ﬁtﬁ )
9A DY 3 By aA ax
3 0., 3 0., 3 0 3 Q 3 0 a L Sto
e mord wag? miw? wwd wey Y
3 3 3 9 a .9 3,8 2 8 3,9
3,-5(5% w gﬁt% W sk Y gty O E(g% w W
3 ,9g 3 ,9q 3 .3 ] ¢ 3 ,a a ,98d
E(E u} gﬁ{'ﬁ u} "ﬁ(% u) W(% u) ﬁ;(% 31__) '5'&(-3-2— E)
Zgrp
(D-1)
where
2 av
G R = R (D-2)
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